MCS

1.5 mm female and male terminals (engine compartment)

Features

- MCS technology
- 6 mm pitch
- High current carrying capacity
- Compatible with single wire sealing

Performance characteristics

Contact resistance:	< 3 mΩ
Contact mating force:	< 10 N
Contact unmating force:	< 3.5 N
Current carrying capacity	
at 23°C up to approx.:	14 A
at 85°C up to approx.:	11 A
at 100°C up to approx.:	8 A

Tooling

Manual crimping tool:	Consult us
Mini applicator:	Consult us

Part Numbers	Type	Wire size range (in mm2)		Insulation Ø (in mm)	Material	Plating
		Min.	Max.	Max.		
MCSFD01	Female	0.35	0.50	1.70	CuSn	Sn
MCSFD02	Female	1.00	1.50	2.40	CuSn	Sn
MCSMD01	Male	0.35	0.50	1.70	CuZn	Sn
MCSMD02	Male	1.00	1.50	2.40	CuZn	Sn

MCS

1.5 mm female and male terminals (engine compartment)

Dimensional characteristics

20.2 16.5 10.4 6.1 7.0 8.7 10.4 8.7 10.

26.4 22.7 15.6 10.4 \$\int_{\text{3.1}}^{\text{26.4}}\$

Notes:

_	
-	